APPENDIX B

DERIVATION OF THE WILSON TABULAR

METHOD OF STREAM ROUTING

The Wilson tabular method of channel routing uses a linear reservoir for reach storage.

$$S = K_S Q$$
 $S = storage (cu. ft.)$ $Q = discharge (cu. ft./sec.)$ $K_S = constant (sec.)$

flow function $\frac{ds}{dt} = K_S \frac{dQ}{dt}$

Ks is a function of the reach length.

Continuity equation:

$$\frac{ds}{dt} = I - Q$$

Combine the two above equations for $\frac{ds}{dt}$

$$I-Q = K_{S} \frac{dQ}{dt}$$

$$\overline{I-Q} = K_{S} \frac{(Q_{2} - Q_{1})}{\Delta t}$$

$$\frac{I_1 + I_2}{2} - \frac{Q_1 + Q_2}{2} = K_S \frac{(Q_2 - Q_1)}{(\Delta t)}$$

$$Q_2 + \frac{2K_S}{\Delta t} Q_2 = I_1 + I_2 - Q_1 + Q_1 \frac{2K_S}{\Delta t}$$

$$Q_2 (1 + 2K_S) = I_1 + I_2 - Q_1 (1 - 2K_S) \frac{\Delta t}{\Delta t}$$

Let
$$c = \frac{2K_S}{\Delta t}$$

$$Q_2 = I_1 + I_2 + Q_1 (c-1)$$
 $(c + 1)$

 $K_{\mbox{\scriptsize S}}$ is the travel time of the reach.

$$K_S = \frac{S}{Q} = \frac{AL}{AV} = \frac{L}{V}$$
 (Uniform flow)

A = cross sectional area.

L = reach length.

V = flow velocity for steady uniform flow.

$$K_S = \frac{L}{V} = T_t = \text{travel time of the reach}$$

Actually we are concerned with the flood wave velocity instead of the flow velocity.

$$T_W = \frac{T_t}{R}$$

 T_{W} is the travel time of the reach based upon the flood wave velocity.

R is the ratio between $T_{\mbox{\scriptsize t}}$ and $T_{\mbox{\scriptsize W}}$ R ranges from 1.2 to 1.5

Typically R = 1.3 to 1.4

therefore $K_S = \frac{T_t}{R} = T_W$

use $\Delta t \leq K_S$ (0.5 K_S to K_S)

To determine T_{t} use bankful velocity or a maximum expected velocity for a given design frequency